Fuel Cells For Robots

Pavlo Rudakevych iRobot

Product Needs

- Military/Police/Search and Rescue
 - PackBot
 - Gladiator
 - ThrowBot/UGCV
- Industrial and Oil
 - CoWorker
 - MicroRig

PackBot

- Mission capable robots
- Rugged, portable tools for minimal casualty engagements
- Assisting behaviors
- Small size and weight

System Concept

iRobot

System Concept

System Concept Continued

- Modular payload bays
 - 3 primary
 - 1 head
 - 4 side pods
- Each payload socket suppor
 - Ethernet
 - 2 Analog video inputs
 - USB
 - 2 serial ports
 - Raw power input/output
 - FARnet (low latency motor/sensor bus)
- Mission Specific Sensors/Effectors

System Concept Continued

- On-board functionality
 - Full Pentium III system
 - Accelerometers
 - GPS
 - Compass/Inclinometers
 - Health (temperature, current, etc)
 - Radio
 - Active power routing
 - Active power conservation
 - User or system specified conservation measures
 - Intelligent payload management

Packbot Capabilities

- Climbing/scrambling
- Rugged (survives drops of 3m)
- Expandable (payloads)
- Low profile (thermal, visible)
- Watertight to 3m
- Quiet
- Fast (4+ m/s)

Mission Sensors/Prototype Payloads

Power & Duration

- 230 Watt-Hours Capacity (2 NiCad packs)
- 3x with Lilon secondary, 5x Lithium primary (est)
- 16-30 Volts (24 nominal), 30amp fuse
- Payload Power Supplies Supported
 - Lithium
 - Fuel Cells
 - Hybrid power
- Using NiCad Packs
 - 2+ hours at 2.2 m/s (on-road)
 - 2+ hours at 1.5 m/s (off-road)
 - 12+ hours (sentry/monitoring duty)
- Each NiCad Pack about 6lbs.

Other MilSys

- ThrowBot: pocket sized, 1kg
 - 9-12V, 1-2A, 25WHr
- Gladiator: 800lb class
 - 2 kW continuous @48 Volts,
 - 5 kW peaks
 - total: 30 kWh over 24 hrs
 - One dimension <12"</p>
- Military front end:
 - strip hydrogen out of diesel

MicroRig Overview

- MicroRig is a fully autonomous downhole robotic vehicle.
- Its purpose is to carry oil field sensors to the bottom of oil wells to take data critical for reservoir management.
- This information is very valuable to the oil companies in that if the reservoir is properly managed, more oil may be recovered at less cost.
- Currently sensors are carried down on ends of long cables or pushed down on the end of long flexible tubes.

Successful Return from 7000 ft.

Competitive Advantage Against Coiled Tube

- The MicroRig has the most competitive advantage in the newer non-vertical (highly deviated) wells. These wells have sections that are greater than 50 degrees from vertical.
- In these wells, gravity alone will not get the sensors to the bottom, so the old technology requires them to be pushed down on the ends of flexible coiled tube.
- These wells are 15 to 25 k ft deep. As a result, the spool of coiled tube is huge, not to mention the handling equipment to push the tube and the control van. For offshore wells, a coiled tube unit requires a barge for transportation.

MicroRig being lowered into well

No Need for Tube or Cable

- The MicroRig is fully Autonomous, so there is no need for connection to the surface.
- The MicroRig ships in two 7 ft long shipping cases that may be flown to the sight on a helicopter.
- The MicroRig uses behavioral software to carry out the mission as well as health monitoring such as remaining battery capacity.
- The MicroRig currently used 32 D-D lithium primary cells as its fuel source.

Project Backing

- The MicroRig project currently receives fund from:
 - BP
 - Halliburton
 - Marathon Oil
 - Stat Oil

MicroRig Power

- Small Vehicle Specs:
 - Max Environmental Temperature: 125 deg C
 - Average Power: 200 watts
 - Peak Power: 300 watts
 - Voltage: 105 to 120V (200 V max)
 - Mission duration: 24 hrs ave (longer is better only draws 200 watts returning)
 - Min Capacity: 10 Mega Joule (10 * 10⁶)
 - Max OD for Cell Packaging: 1.687"
 - Length: < 20 ft.

MicroRig Power

- Large vehicle Specs:
 - Max Environmental Temperature: 125 deg C
 - Average Power: 700 watts
 - Peak Power: 900 watts
 - Voltage: 150 to 200 V or higher
 - Mission duration: 24 hrs average
 - Min Capacity: 50 Mega Joule (50*106)
 - Max OD for Cell Packaging: 3.25"
 - Length: < 20 ft.

CoWorker

Coworker is:

- An internet connected remote presence robot.
- A revolutionary new form of worker to worker communication.
- A more cost effective way to closely link multiple worksites.
- A way to enable your best workers to be in two or more places at once.
- A new way to work…

CoWorker

- Digitally controlled pan/tilt/zoom camera -- Allows you to see the office from a whole new angle.
- High quality speaker and microphone --Audio quality lets you carry on a conversation.
- Rugged platform that turns on a dime --Highly maneuverable & easy to drive.
 Makes getting around the office easy.
- Ethernet 802.11 LAN radios -- Robust wireless communication.

CoWorker

- Bus Voltage 18 to 30V, 24 nominal
- 15AHr lead acid batteries
- 2.5A active non-driving current
- Max 10A continuous driving
 - fuzed

Review

- Military/Police/Search and Rescue
 - PackBot (scooter class)
 - Gladiator (bicycle class)
 - ThrowBot (cell phone class)
- Industrial and Oil
 - CoWorker (bicycle)
 - MicroRig (high temp, cyl form factor)

